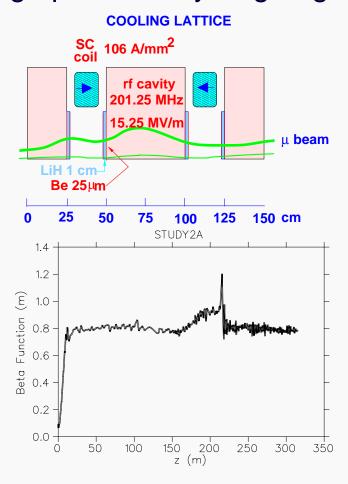
Gas-Filled Cooling Section Study 2B

Juan C. Gallardo


gallardo@bnl.gov

Introduction

The cell in the cooling channel has an almost constant *beta function*; this suggest that the *discrete* LiH absorbers may be replaced by an *uniformly distributed* high pressure hydrogen gas (GH).

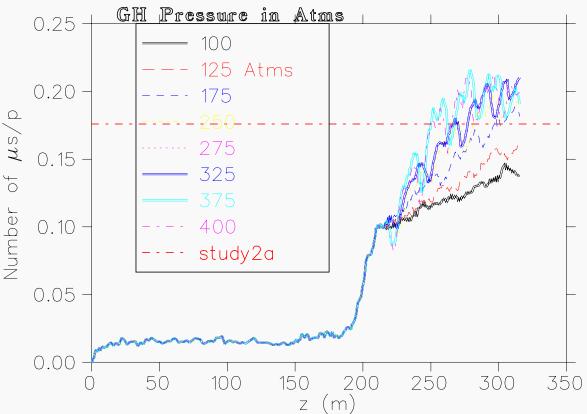
Calculations

The cooling channel consists of 66 cells with 4 LiH windows of $1\,cm$ thickness each. The minimum of the energy loss for both GH and LiH are:

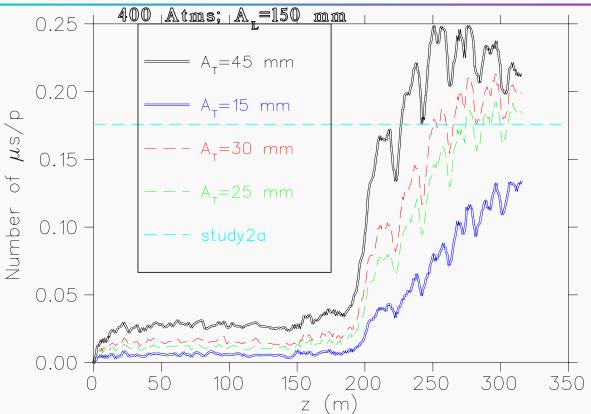
$$\frac{dE}{dx}|_{GH} = 4.103 \frac{MeV}{g} cm^2 \qquad \frac{dE}{dx}|_{LiH} = 2.038 \frac{MeV}{g} cm^2$$

The total energy lost of the muon beam in the LiH window is

$$\Delta E|_{LiH} = 2.038 \times \rho_{LiH} \times 66 \times 4 \approx 420 \, \mathrm{MeV}$$

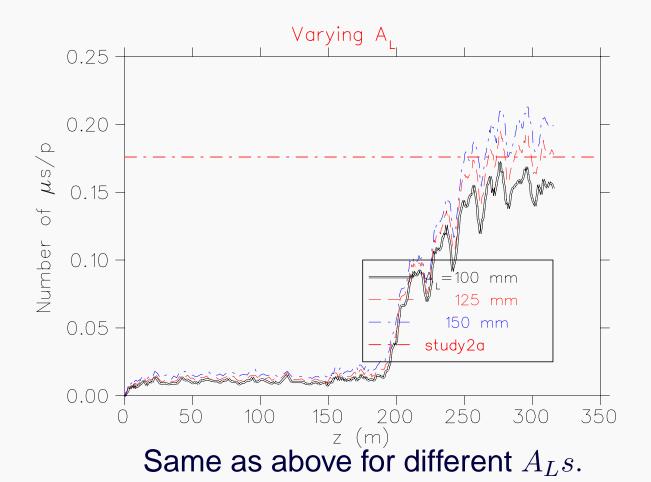

At 25°C and 1 atm, GH gives

 $\Delta E|_{GH} = 4.103 \times \rho_{GH} \times 66 \times 150 \approx 3.4 \, \text{MeV}$ where $\rho_{LiH} = 0.78 \, \frac{g}{cm^3}$ and $\rho_{GH} = 8.38 \times 10^{-5} \, \frac{g}{cm^3}$. This implies we have to increase the density (pressure) of the GH by a factor of 124.


ICOOL simulation

Muon Collaboration

Number of μ s per p on target into the accelerator normalized trans. acceptance $A_T=30\,\mathrm{mm}$ rad and normalized long. acceptance of $A_L=150\,\mathrm{mm}$ for a momentum cut $0.1 \le p \le 0.3\,\mathrm{MeV/c}$ for several HG pressures. The horizontal red line is the final performance achieved in Study2B.


ICOOL simulation

Same as above for different $A_T s$.

ICOOL simulation

Conclusions

The results indicate that we achieve a better performance by 20~% than Study2B (No. $\mu/p=0.21$) with high pressure gas (GH) 375 atms at $300~^{\circ}K$ or 96 atms at $77~^{\circ}K$.

